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In studies of fine magnetic particle systems, saturation remanence is often measured during warming
from liquid helium temperature in order to determine the distribution of blocking temperatures.
These data have usually been treated as if they are unaffected by magnetic interactions. However,
this treatment is often inconsistent with the experimental data. Furthermore, the thermal decay of
saturation remanence often gives values for the mean blocking temperature that are inconsistent
with other measurements, such as low temperature ac susceptibility and zero-field-cooled
magnetization curves. As an alternative interpretation of these remanence data, we suggest that
interactions destabilize the saturation remanence state and accelerate its decay with increasing
temperature. As a result, the blocking temperatures associated with the thermal decay of remanence
are effectively reduced. We have modeled the effects of interactions on low temperature saturation
remanence data using a simple mean interaction field model. This model produces remanence curves
that have a steep slope at low temperatures, consistent with experimental curves frequently reported
in the literature. ©2000 American Institute of Physids$0021-89780)05713-3

I. INTRODUCTION are inconsistent with other measurements. In each case, mean
blocking temperature obtained witfl,; data appears to be

In most studies of low temperature saturation remanencan underestimate. Five examples from the recent literature
in fine magnetic particle systems, these systems are treated & given below.
if interactions have no effect upon the saturation remanence (i) In studies of ferrofluids, El-Hiloet al! obtained a
(M,9.*7®If these systems can be modeled as noninteractinghean blocking temperature of 32 K. According to their cal-
single domain particles with a log—normal distribution of culations, this implies that a peak should occur in the zero-
particle volumes, theiM s, as a function of temperatufe  field-cooled (ZFC) magnetization curve at 60 K. However,
should have zero slope dt=0; should decrease with in- this predicted peak is 35 K lower than the actual measured
creasingT; and should have an inflection point where the peak for their most dilute samplée., the sample with the
rate of decrease reaches a maximum. However, experiment@last interactions
M data(as a function of increasing) frequently start with (i) In studies of barium ferrite particles, Batlkt al?
a rapid decrease at the lowest temperatures measured, a@tained a mean blocking temperature of 81 K. According to
show no indication of an inflection poirtsee, for example, their calculations, this gives a mean particle volume of 6
Fig. D.7% In Refs. 1, 2, and 3, theoretical fits have beenx 1¢# A3, which is less than the value obtained from trans-
made toMs vs T data, assuming noninteracting particles mission electron microscopyTEM) observations (1.1
with a log—normal volume distribution, but these fits contain yx 1 gp A3) .4
an inflection point that does not appear to be present in the (iii ) In studies of granular Ni-Sig¥ilms, Xu et al® and
data(see Fig. 1. Furthermore, in several of the same studieszpaget all! used both remanence data and ac susceptibility
where a marked decrease M is observed at lowT,  gata to measure mean blocking temperatures and to calculate
Ms/Ms has been extrapolated down Te=0 (whereMsis  mean particle volumes. However, the mean volume calcu-
the saturation magnetizatiprand the result is less than the |5ted from remanence data is less than the value calculated
theoretical value expected for a system of noninteracting;om the ac susceptibility data by a factor of roughlysee
single domain particlek®48:1° footnote in Ref. 5

Another problem with the conventional treatment of low (iv) In studies of nanosized maghemite particles, Morup
temperatureM  data is that, in several studies, mean block-qt 518 gbtained a mean blocking temperature frddn, data
ing temperatures have been calculated fldng data which ¢ js much lower than the same temperature obtained from
Mossbauer spectroscopy and ZFC magnetization measure-
dElectronic mail: pike@geology,ucdavis.edu ments.
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0.5 magneti¢ usually down to liquid helium temperature. A
o Ms =37 (emulcc) small applied field, usually not larger than 1 mT, is then
0.4 18 o Ms=2 (emu/cc) applied and the magnetization is measured as a function of
CED — Calculated increasing temperature. In ac susceptibility measurements, a
.03l % sample is also cooled in zero field, and an ac field usually not
= < larger than 0.1 mT is applied. In these low field experiments,
s the low energy state of a fine magnetic particle system will
02 consist of a spin-glass-like state with small net magnetiza-
tion. Interactions act to stabilize this state, making it more
01} difficult for an individual moment to switch direction; hence,
interactions increase the blocking energies and temperatures.
0 . , By contrast, in the low temperature saturation remanence
0 50 100 150 200 state, the moments will be predominantly oriented towards

Temperature T(K) the previously applied field. The same antiferromagnetic in-
FIG. 1. The temperature variation of the reduced saturation remanence g?ractlons which give rise to a spln-gllass-llke State_ can onIy
different concentrations of fine K@; particles. The solid curve is the fit of PUSh moments away from the direction of saturation rema-
a model assuming no interactions and a log—normal distribution of volumesience. Interactions will therefore destabilize the saturation
[after El-Hilo et al. (Ref. D]. remanence state, and decrease the blocking temperatures ob-
served during thermal decay of saturation remanence. It is
therefore possible that ac susceptibility and ZFC magnetiza-
tion curves will yield different blocking temperatures than
the thermal decay of saturation remanence.
It is more difficult to reconcile our hypothesis—that in-
ctions reduce the blocking temperatures associated with
Mhe saturation remanence—with the results of El-tilal,*

In the ab d ibed | tic int . who report thaivl /Mg is unaffected when the particle con-
N the above described examples, MAgnEec INtETactiongy i ation is increased in a ferrofluid. An extrapolation of

are assumed to have no effect on the magnetic behav'or_f“eierS/Ms data toT=0 actually appears to give a smaller

low temperatures. H_ovv_ever, |t_has k_)ee_n suggesteql " the_ II"emanence for the concentrated sample than for the dilute
erature that magnetic interactions in fine magnetic particl

; I destabilize th turati &401m esample(Fig. 1. Nonetheless, the difference is small, and this
systems will destabilize the Saturation remanence has been cited as evidence that interactions do not affect

order _to account fo.r the above described dat."’?’ we §uggest ﬂf\ﬁrs.l This result, however, has another explanation: We sug-
f_oIIowmg hypothesis: at lowT, the;e desta}b|I|Z|ng mFerac— gest that in any ferrofluid, even a nominally dilute sample
tions accelerate the decay M with increasingr; this gives there is inevitably a certain amount of particle agglomera-

ri n effective r ion in the blockin mperatures. .
azgotzoia?ed ?Ni?rftsa?urgttjigﬁtr%man;nieb ?r? thiéJ ;?ticree \;s\‘/teu ;2"0”' In more concentrated samples, the distance between ag-
) ’ lomerations decreases and their size increases, but small

cuss some p035|ble_ _ol_)Ject_lons to_thls hypothe_5|s. Wwe als gglomerations are nonetheless present even in the most di-
r_nodel these de_stab|I|2|ng interactions with a simple Meate samples. Djurbergt al** have found evidence for small
field model. This model_ produqelm rs CUTVES that have a particle agglomerations even in their most dilute ferrofluid,
steep slope at low, 90n3|stgnt with the experimental curves and even after the particles had been coated with a surfacant
frequently reported in the literature. layer to prevent agglomeration. With regard to the data of
El-Hilo et al,! we suggest that most of the reductionNhs
Il. REDUCED BLOCKING TEMPERATURES (due to interactionstakes place even in the dilute sample,
due to small particle agglomerations.

(v) In studies of iron oxyhydroxide particles, Dickson
et al.” obtained a mean blocking temperature of 9 K. From
this they calculated the pre-exponential factge10t2Hz.
This is considerably larger than most experimental value?era
(which would result from an underestimate of the me
blocking temperatupe

The effect of interactions in fine magnetic particle sys- . . )
tems has been widely studied. It is widely thought that strong N Summary, our hypothesis—that interactions reduce
interactions at low temperatures will give rise to a spin-glassth€ Plocking temperatures associated with thermal decay of
12-15| Jow temperature ac susceptibility and ZFC remanence—is consistent with experimental data. It is also

like state: . . . . ) )
magnetization measurements, an increase in particle concefensistent with a Monte Carlo simulation of an interacting
granular magnetic solid at low temperatut@s.

tration leads to increased blocking temperatdfes> At first
glance, this result seems to contradict the above described

hypothesis. However, no contradiction actually exists belll- MEAN FIELD MODEL

cause the blocking temperatures obtained fidg data are We have modeled the effect of interactions on saturation
not directly comparable to those obtained from ac susceptiremanence using a simple mean field treatment. A mean field
bility and ZFC magnetization measurements. treatment of interactions would not be applicable to a spin-

Both ac susceptibility and ZFC magnetization measureglass-like state, where the moments order with no preferred
ments are made with an applied field that is small enougldirection. However, in a low temperature saturation rema-
that nonlinear effects can be ignored. In a ZFC magnetizanence state, the moments will be predominantly oriented to-
tion measurement, the sample is cooled in zero figlarting  wards the previously applied field. Hence, the interaction
from a high enough temperature that the sample is superparéeld will also have a preferred direction. The fact that satu-
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ration remanence is experimentally observed to be less than
the noninteracting value indicates that the preferred direction
of the interaction field is antiparallel to the magnetization.
Our mean interaction field is intended to model this preferred
direction. A mean field treatment of interactions in fine par-
ticle systems has previously proven useful in analyzing fer-

romagnetic resonance datand SM curves'®

Consider a collection of uniaxially anisotropic particles

with identical volumeV, anisotropy fieldH,, and spontane-
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. v
m(v,t)=—f,exg — —(1+a’M(1)?)
2T
. |vaM(t) vaM(t)
X 2| sin — +mcos —
T T
(6)

Equation(6) together withM = [dvf(v)m(v) comprises an

ous magnetizationls, where the particle easy axes areintegral differential equation for the time dependence of the

aligned with thez axis. Let the available orientation of each
particle moment be restricted to the positive and negative
direction (up and down, respectivelyLet T, denote the
probability per unit time that an up moment flips dowm;

is the opposite probability. Then

magnetization.

In a measurement d1,;, a saturating applied field is
removed at=0 and the magnetization is measured at a time
t, later. In a typical measuremernt,, is roughly 100 s.
Henceforth in this article, we will fix,, at 100 s, andM
will be treated as a function of.

To model the measurement b, for «<1, we have
the initial conditionm(v,t=0)=M(t=0)=1. However, for

whereEB; | is the energy barrier that must be overcome fore>1, if M=1, this would makeH ¢ less than—H,, which

an up moment to switch dowrk is Boltzmann’s constant,
and f, is an “attempt” frequency, estimated at roughly
10°Hz. A similar expression applies td,,. The rate of
change of the total normalized magnetic moment is

In the presence of an applied field,,,, where —H,
<Hgpp=<Hx, we havé®
VIgH, )
EB“=T(1+Happ/Hk) (3
and
EB;=EB;;—2VIHapp. (4)

If Happ<—Hy or H<Hgp,, then no energy barrier exists

and all the moments align with the applied field. If we re-

place H,pp, with @ mean interaction field ,,i= —amH,,
where« is dimensionless, then E(R) becomes

. VIgH, 1 )

m=—f,expg — KT (1+(am)?)
<2 VIgHam ) VIgH am 5
sinh— 5 +2mcos T | (5)

would imply that all the moments instantaneously switch to a
negative orientation. Then, by the same reasonihg; — 1
andH s would be greater thaHl,, which would imply that

all the moments instantaneously switch to a positive orienta-
tion; this is a contradiction. The source of this problem is the
assumption that the saturating field is removed instanta-
neously att=0. In an actual measuremer,,, is ramped
down from a large positive value to zero over some finite
time interval (of length At) ending att=0. As Hg, is
ramped downM must decrease enough that the above de-
scribed contradiction is avoided, i.é1g,;+H = —Hy. In-

app
serting,H ;= — aMH,, this becomes

M= (Hc+Hpp/(Hya). @)

While H,,is ramping downM (t) will be governed by
Eq. (6) but is also constrained by the upper bound in &9.
and byM=1. In the limit whereAt is infinitesimally small,

Eq. (6) can lead to only an infinitesimal decreaseMift) as

the field is ramped down. Therefore, in this limi| ap-
proaches the lesser of the two upper bounds. Wked, we
haveH,,=0, and Eq.(A27) becomesM <1/a. For a>1,

this becomes the dominant upper bound. Therefore, in the
limit of small At, for a>1, the initial condition becomes
M(t=0)=1/a.

IV. MODEL RESULTS

Analytical solutions to the mean field model can be ob-
tained in certain limiting cases, as described in the appendi-
ces. In the limit of smalkx (Appendix A), the mean interac-
tion field shifts the peak in_the distribution of blocking

Consider next a collection of particles with a normalizedtemperaturesp(T) = —dM,J/d(T), to lowerT (Fig. 2). (As

distribution of volumesF(V), where particles having vol-
ume betweenV—dV and V+dV make up a fraction

shown in Appendix A, the unblocking temperature of a
non-interacting particle witv=1 is T=1/C, where C

2dVF(V) of the total volume. Let us define a dimensionless=2 In[2t..f,/In(2)]. Therefore, it is natural to plot our results

volume v=V/V and a dimensionless distributiof(v)

=VF(vV), whereV is the peak ofF (V). Let us writeM
=[dvf(v)m(v) andH ;= —aMH. Note thatf(v) will be

peaked ab=1. Let us also introduce a dimensionless tem-

peratureT=kT/VIH,. Then Eq.(5) becomes

as a function ofcT). For =0, in the limit asT goes to zero
(Appendix B, M(T) approaches 1, and(T) approaches
zero; this implies that a peak is still present in the distribu-
tion of blocking temperatures at soniie-0. Fora=1, in the

limit as T andAt go to zero(Appendix Q, we have simpli-
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0 |
o} cT 0.1

FIG. 2. The distribution of blocking temperaturﬁ(sc?) as a function of

CT, calculated using (v)=2v%exp(~0.66666%°%) and Eqgs.(A14) and _
(A15), for «C=[0,0.07,0.14,0.21,0.38 The dotted line is the noninteract- FIG. 4. Additional calculations of saturation remanence at loWwdor «

ing case, i.e.¢C=0. Curves for increasing values afC have peaks which ~ =1. The same function was used as fgv) as in Fig. 3. The lowest 8
progress to lowe€T. We definedT so that a particle at the peak volume, points inT were fitted to (1a\/?), wherea=1.3. These data illustrate the
V, has an unblocking temperatufe- 1/C, i.e.,CT=1. marked thermal decay dfl ¢ that is often observed in experimental results.

fied the model by letting all the particles have identical vol-incorporated an applied field that starts at a large positive
ume, and we have shown thit,s has the functional form  value just prior tot=0) and is quickly ramped down to zero
(1/a)(1—a\/?), wherea is a fitting parameter. Hence, the (att=0).
peak in the distribution of blocking temperatures has van-  Calculations oM are shown as a function &T for a
ished. Zhacet al. found that their low temperatufiél s data  range of a values in Fig. 3. Additional low temperature
fit this functional form!* points are shown forr=1 in Fig. 4; note thaM , appears to

In our numerical calculations, the continuous V°|Umeapproach 1 a?goes to zero forw=1. In Fig. 3, fora>1,

distribution was approximated by delta functions at tenMrsappears to approach a value less thanfgees to zero.

equally spaced VO'“”.‘eﬁ ' The model_ then becomes a Sys'(]’hese numerical results also indicate that when interactions
tem of ten coupled differential equations that can be solve . = .
are strongi.e., a=1), M has a steep slope at low This

by the Runge—Kutta method. These delta functions wer . .

each weighted by (v;), wheref(v) is a log—normal distri- Is cons_lstent W_lth the |_%WT remanence curves freque_ntly

bution with a peak at 1 and logarithmic standard deviation mfound in the I!teraturb and sugge;ts e mterac_tlons_

0.26. To obtainM . for a=<1, Eq.(6) was evaluated at, should be considered as an explanation for curves with this

=100s, with initiésl conditior,m(t=0,vi)=0. Fora>1, we behavior. The eight points with lowe$tin Fig. 4 closely fit
the function (- 1.3\/?). This functional form is consistent
with our analytical results and also with the experimental

' data of Zhacet al?

V. CONCLUSIONS

In the presence of strong magnetic interactions, the dis-
tribution of blocking temperatures associated with the ther-
mal decay of saturation remanence is not directly compa-
rable to the distribution of blocking temperatures obtained
from ac susceptibility or ZFC magnetization curves. This is
because the later are measured in low fields, in which these
systems order into spin-glass-like states that are stabilized by
interactions, leading to increased blocking temperatures. By
contrast, interactions destabilize the saturation remanence
state, drive it to a lower magnetization, and lead to an appar-

o values ent reduction in the blocking temperatures. A mean interac-
— 0 ——07 —a 1.1 tion field model predicts that when interactions are strong,
a— 0.1 08 —5_13 there will be a reduction iM ¢ at T=0, and thatM ¢ will
— 0.4 «~— 08 _— g 15 have a (+a\/T) functional dependence at loW wherea is
—o— 06 —e—1.0 a fitting parameter. This is consistent with the marked de-

_  crease ilM 4 that is observed with increasirigin many fine
FIG. 3. Numerical calculation of saturation remanence as a functi@iTof

for 0<a<1.5. Forf(v), a log—normal distribution was used with a peak at magnetic particle systems. It also suggests that the effects of

v=1 and logarithmic standard deviation of 0.26. With increased interac-magnetIC mt_eractlons have been mapproprlately 'gnorEd n
tions, the effective blocking temperatures progressively decrease. many studies of low temperature saturation rema-

Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



J. Appl. Phys., Vol. 88, No. 2, 15 July 2000 Pike, Roberts, and Verosub 971

nence. Pikeet al?° recently described a sensitive techniqueBecausem,(v,t) solves Eq.(6) with =0, Eq. (A6) be-
for estimating the effects of magnetic interactions in finecomes
particle systems. Use of this technique at [Bwight help to

. . J— 19
resolve some of the anomalies that are frequently seen in g (v,t)=—2 £,T(0,T)| my(0,t)+M(t)—|. (A7)
analyses of low temperatuid ; data.
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2uf, = (t., ,
ml(v,t)=—?l”(v,T)Jodt Mo(t")

Xexg —2(t—t")f I'(v,T)]. (A8)
) ) ) ) Inserting Eq(A2) for M(t"), with v for the dummy variable
We are interested in the effect of weak interactions on, the integral, Eq(A8) becomes
the peak of the distribution of blocking temperaturg€T). o
Let us treat this as a perturbation of the noninteracting case, mj(v,t)=exg —2tf,I'(v,T)]
i.e.,a=0. We will letmy(v,t) denote the solution of E¢6)

APPENDIX A: ANALYTIC SOLUTION FOR SMALL «

_ e g — 2uf _ t
for a=0, vy|th initial condition my(v,t=0)=1. It can be «| - U_a F(v,T)f dvf(v)f dt’
shown that: T 0

mo(v,t)=exd —2tf I'(v,T)], (A1)

xexg 2t f,'(v,T)]exd —2t' f,I'(»,T)].

where we use the notatidi(v, T)=exy —v/2T]. Similarly, (A9)

the total magnetization in the noninteracting case will be

denoted byM(t), and this equals Evaluating Eq(A9) att=t, gives

Mo(t)=f dvf(v)exd —tf,20 (v, T)]. a2y Mtm

_ 2uf _

It is well known that, due to the large magnitude 0f{,), =exq—2tmfal“(v,T)]( - %) F(v,T)f dvf(v)
exd —t,f.2'(v,T)] can be approximated by the step function T
O(v—vs), where O(x)={0forx<0;1 forx>0}, where — _
vE'is a cutoff volume given by X[eXFthmfa(F(v,T)—F(V,T))]—1

pE=CT, (A3) 2f,(D(0,T) =T (»,T))
where C=2 In[2t,,f,/In(2)]; the subscript ©” again indi- v dvf
cates this is the noninteracting system. Thus, in the noninter- — % vi(v)
acting case

— o0t exd — 2tnfal (v, T)]—exd — 2tnf L (v, T)
M(T)=M(ty)=1— [ °dvf(v). (A4) x| ST 2tnfal (0. D)1= eXH = 2tnfal (7. DI}
0 Nv-v,T)—-1

Equation(A4) implies that the peak qf(T) occurs when &t (A10)

isit the pgak of (v), i.e., whenvS'=1. Hence, the peak of
p(T) is atT=1/C. The following perturbation analysis will

be carried out fow near 1 andl near 1C.
Let us expand Eq6) to first order ina:

It can be shown numerically that, far near 1C andv
near 1, the expression in the curly brackets of &d.0), as
a function ofw, can be approximated by this step function:

{....curly brackets in EqA10)...}

m(v,t)=—2f,I (v, T)(M(v,t)+avM(t)/T). (A5)
=(1—exd — 2t f.L(v,T)])O(v—05). (A11)

We can write m(v,t)=my(v,t) + emy(v,t), and where
m;(v,t=0)=0. Similarly, we write M(t)=Myt) The coefficient in front ofg(v—vg') in Eq. (A11) can be
+aM,(t). Collecting terms to first order imv, Eq. (A5) obtained by taking the limit of the expression in the curly

becomes brackets as goes to infinity. But exp—2t,,f.['(v,T)] is just
my(v,ty,) and can be approximated by the step function
_ _ ¢t
mo(v,t)+aml(v,t)=—2far(v,T)<mo(u,t) 0(v=vo). So,
{....curly brackets in EqA10)...}
=(1-0(v—0vH)O(v—0?". (A12)

+amy(v,t)+aMy(t)—|. (A6)
T

Integrating overv in Eqg. (A10) gives
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v ctyy [ ct
ml(Uatm):_:(l_a(U_vo))f dvf(v)8(v—uy)
T 0

U o
:—:(1—0(v—vgt))fctdvf(v). (A13)
T Yo

We next insert Eq.(A13) into m(v,t,)=my(v,ty)
+amy(v,ty), and insert this intdV = fdvf(v)m(v). We
replacem,(v,t,) with 8(v —vg"). We get

MrS=M(tm)=(fm_dvf(v)) 1 @@ T xvf(o) .
cT cT Jo
(A14)

Pike, Roberts, and Verosub

Becauser<1 andM =<1, m(v,t) given by Eq.(A16) will go
to 1 in the limit asT goes to zero. HenC(M(t) anerS(T)

also go to 1. Therefore, in the limit a6 goes to zero[1
—M(t)] goes to zero, and we can write

Limit(1— aM(t))?
?HO
=(1—-a)?

+Limit{ —2a(1- a)[M(t) - 1]+’ [M(t) — 1]%}
T—0
=(1—a)’+2a(1—a)(1—M(1)). (A18)

Thus, in the limit asT goes to zero, we can write E6A17)

Equation(A14) reduces to Eq(A4) for the noninteracting @S

case. The distribution of blocking temperatures as a function

of CT becomes:

g dMis
p(CT)=— —. (A15)
d(CT)

To proceed further, we insert a specific function féw)
into Eq. (A14). If a log—normal function is used fdir(v),

then the indefinite integral aff (v) does not have a closed

form. We have used the distributiorf(v)=2v2exp

X (—0.66667°), which is peaked ai =1, in order to obtain
a closed form solution. Kaysset al. derived this size dis-
tribution from a model of particle growth by coalescence

during liquid phase sinteringf. We have evaluateqb(C?)
for several values ofGa) using Eqs(Al4) and(Al15). The
results are shown in Fig. 2.

APPENDIX B: ANALYTIC SOLUTION FOR SMALL 7T,
a<l

In the limit asT goes to zero, Eq6) becomes

m(v,t)=— faexp[ - L_(1+a2M(t)2)1
2T

vaM(t)
?

X (1+ m(v,t))ex;{

(1+m(v,t)).

v
= —faexp[ - —(1-aM(v)?
2T

(A16)

The solution of Eq(A16) with initial condition m(v,t=0)
=1is

t
m(v,t)=2 exr{ - faJ dt’
0

U
><exp[——_(1—a|v|(t'))2”— (A17)
2T

m(v,t)=2ex{—faex;{——(l ) lf dt’

xex;{ — L oa(1-a)(1-M(1)
oT

(A19)

Since[1-M(t")], (1~ a), andw are greater than zero, then
t> [hdt’ exd —v/2T2a(1—a)(1—M(t"))].
We can insert this inequality into EGA19) to get

—1. (A20)
2T

v
m(v,t)>2 ex;{ —f,t ex;{ - —(1—a)?

If we insertm(v,t) into M =_fdvf(v)m(v) and evaluateM
att=t,,, this gives usM (T). Using the inequality of Eqg.
(A20) gives

1_Mrs(?)<2_f dvf(v)2 ex;{ —fatm

(A21)

v
xexpg — —(1—a)?
2T

The exponent in EqA21) [compare with Eq(Al)] can be
approximated by the step functici{(v —vSY(1— a)?). As-
sumingf(v) is a slowly varying function ob and inserting
“=CT, Eq.(A21) becomes
1- |v|rs(T)<2f°T’(l P dof(v). (A22)
Usi@ Eq.(A22), the distribution of blocking tempera-
tures atT=0 can be written

—(M(T)=M(T=0))

p(0)= Limit
T—0 T
2 (Tl w2
<Limit= | " dpf (o), (A23)
?*)OT
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whereMrs(T=O)=1 for a<1. We know thatf(v) vanishes

at v=0, and we can assume that it is positive and well-

behaved fow >0, so we can write

L|m|'[E dvf(v)<f(x) (A24)
x—0 X
and Eq.(A23) becomes
— 2C ( cT
p(T_O)<(1_a)2f (1_a)2 (A25)

Hence,p(T) goes to zero in the limit afgoes to zero.

APPENDIX C: ANALYTICAL SOLUTION a=1 AND
SMALL T

Let us simplify the model by letting all particles have
identical volume, s@ =1, andM =m(v=1). In the limit of
small T, Eqg. (6) becomes Eq(A16). With initial condition
M (t=0)= 1/« this has solution

t
ex{ —faJ dt’
0

(¢4

M(t,T)=

xeXp{ — i_(l—aM(t’,T))z ~1. (A26)
oT
Let us defineg(t,T) such that
M(tT)=(La)[ 1~ \T(t,T)]. (A27)

By inspection of Eq(A26) we know thatM (t, T) is less than
1/a and that, at fixed, M(t, T) goes to 14 asT goes to 0.
Therefore, ¢(t, T) is a positive function and, at a fixet
Fd}(t,T) goes to O a§_'goes to 0. We will next prove that,
keepingt fixed, asT goes to 04(t,T) goes to infinity, but it
does so slower than (T)” for any positive numbety. In
other words, as™ goes to 0, the order o:f;(t T) in (1/T)
approaches zero. This implies tha (t,T) approaches

(1/a)[1—a\/?], wherea is a fitting parameter.
Proof:
Inserting Eq.(A27) into Eq. (A26) gives

1-\To(tT+a _ , ¢><t )’
p[_f [lax s -
(A28)

Let t* be a fixed time, and let; andt, be two times
such thatt;<t*<t,, where {(,—1t;) is small. Let us evalu-
ate Eq.(A28) att, andt,, and divide the later result by the
former. We get

1_ \/%d)(tz,?)'f' o
1_ \/%(ﬁ(tl,?)'f' o

ty 2
expy —f,| dt'exg — .
ty

Since (,—t4) is small, we can write, EQA29) as

(" T)
2

(A29)
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VTt — (T
to—1t) — o(t,
(ta—ty) p (1, T) )
1_ f— —
t* T)2
=exp{ - fa(tz—tl)ex;{ - % ] . (A30)

Since \/=¢(t* T) goes to O asT goes to 0, and since
VT#(t,T) is positive, we know thatyTa/at[ ¢(t,T) ]|

must also go to 0. Therefore, Esgoes to 0, the left hand
side of Eq.(A30) goes to 1. In order that the right hand side

also goes to 1, we know thai(t*,T) must go to infinity.
Since both sides of EA30) go to 1 asT goes to 0, we
can expand the exponent on the right hand side to first order
of its argument. Let us also subtract one from each side of
Eqg. (A30), and multiply by sides by a negative sign, and
omit \/=¢(t1,T) in the denominator of the left hand side,

since this goes to 0 ab goes to 0. Then, in the limit as
goes to 0, Eq(ASO) becomes

\/:(tz t1)

1+«

¢(t 7

B(t*,T)2
|

C= fa(tz—tl)exp[ -
(A31)

Since ¢>(t,T) is a positive function, then in the limit ak

goes to 0, we know that¢(t,T)/dt|+ will have the same

order in (1T) as doesp(t*,T). Therefore, Eq(A31) im-
plies

0 (\NTh(t* 1) =047,

1 _
exp[ — 5t ,T)zb,
(A32)
WhereO(lr?) gives the order in (]]_7) of the indigated expres-

sion. Let us next suppose that in the limit Bsgoes to O,
¢(t*,T)>(1/T)” for some positive numbey. Then

Oum(NTh(t* 1) >y—112, (A33)
and also
1 1
Oum ex;{i(lfr)ZVD<o 1) exp[ H(t*,T) D
1 _
—Oum exp[—§¢>(t*,T)2D.
(A34)
Combining Eqs(A32)—(A34), we get
Oum exp{%(lﬁ)zy ><1/2— y. (A35)

But, in the limit asT goes to O, the exponent in EGA34)

will have a larger order in (I/) than any polynomial. There-
fore, a contradiction has occurred. And therefore we know

that in the limit asT goes to 04(t*,T) will be smaller than
(1/T)” for any positive value ofy.

Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



974 J. Appl. Phys., Vol. 88, No. 2, 15 July 2000 Pike, Roberts, and Verosub

IM. El-Hilo, K. O’'Grady, and R. W. Chantrell, J. Magn. Magn. Mat#&t.4, 11B. Zhao, J. Y. Chow, and X. Yan, J. Appl. Phy9, 6022 (1996.

295(1992. 24, Mamiya, I. Nakatani, and T. Furubayashi, Phys. Rev. L&@.177
2K. O'Grady, M. El-Hilo, and R. W. Chantrell, IEEE Trans. Mag®9, (1997.

2608(1993. 13C. Djurberg, P. Svedlindh, P. Hordblad, M. Hansen, F. Bodker, and S.
3p. V. Hendriksen, F. Bodker, S. Linderoth, S. Wells, and S. Morup, J. Morup, Phys. Rev. Let{79, 5154(1997).

Phys.: Condens. Mattet, 3081 (1994. 1T, Jonsson, J. Mattsson, C. Djurberg, F. Khan, P. Hordblad, and P.
4X. Batlle, M. Garcia del Muro, J. Tejada, H. Pfeiffer, P. Gorert, and E. Svedlindh, Phys. Rev. Let?5, 4138(1995.

Sin, J. Appl. Phys74, 3333(1993. 153, L. Dormann, R. Cherkaoui, L. Spinu, M. Nogues, F. Lucar, F.
5Y. Xu, B. Zhao, and X. Yan, J. Appl. Phyg9, 6137(1996. D’Oranio, D. Fiorani, A. Garcia, E. Tron, and J. P. Jolivet, J. Magn.
6S. J. Greaves, M. El-Hilo, K. O'Grady, and M. Watson, J. Appl. Pi. Magn. Mater.187, L139 (1998.

6802(1994. M. El-Hilo, R. W. Chantrell, and K. O'Grady, J. Appl. Phy84, 5114
’D. P. E. Dickson, N. M. K. Reid, C. Hunt, H. D. Williams, M. El-Hilo, (1998.

and K. O'Grady, J. Magn. Magn. Matet25 345(1993. 17C. surig and K. A. Hempel, J. Appl. Phy80, 3426(1996.
8S. Morup, F. Bodker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B!¥X. D. Che and H. N. Bertram, J. Magn. Magn. Mat&iL6, 121 (1992.

52, 287(1995. 194, Pfeiffer, Phys. Status Solidi A18, 295 (1990.

9H. J. Blythe and V. M. Fedosyuk, J. Magn. Magn. Matk55, 352(1996. 2C. R. Pike, A. P. Roberts, and K. L. Verosub, J. Appl. PI85. 6660
OW. Luo, S. Nagel, T. Rosenbaum, and R. Rosensweig, Phys. Rev6Lett. (1999.
2721(1991). 2lW. A. Kaysser, S. Takajo, and G. Petzow, Acta Metafl, 115(1984.

Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



