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The effect of magnetic interactions on low temperature saturation
remanence in fine magnetic particle systems
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In studies of fine magnetic particle systems, saturation remanence is often measured during warming
from liquid helium temperature in order to determine the distribution of blocking temperatures.
These data have usually been treated as if they are unaffected by magnetic interactions. However,
this treatment is often inconsistent with the experimental data. Furthermore, the thermal decay of
saturation remanence often gives values for the mean blocking temperature that are inconsistent
with other measurements, such as low temperature ac susceptibility and zero-field-cooled
magnetization curves. As an alternative interpretation of these remanence data, we suggest that
interactions destabilize the saturation remanence state and accelerate its decay with increasing
temperature. As a result, the blocking temperatures associated with the thermal decay of remanence
are effectively reduced. We have modeled the effects of interactions on low temperature saturation
remanence data using a simple mean interaction field model. This model produces remanence curves
that have a steep slope at low temperatures, consistent with experimental curves frequently reported
in the literature. ©2000 American Institute of Physics.@S0021-8979~00!05713-3#
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I. INTRODUCTION

In most studies of low temperature saturation remane
in fine magnetic particle systems, these systems are treat
if interactions have no effect upon the saturation remane
(M rs).

1–8 If these systems can be modeled as noninterac
single domain particles with a log–normal distribution
particle volumes, thenM rs, as a function of temperatureT,
should have zero slope atT50; should decrease with in
creasingT; and should have an inflection point where t
rate of decrease reaches a maximum. However, experim
M rs data~as a function of increasingT! frequently start with
a rapid decrease at the lowest temperatures measured
show no indication of an inflection point~see, for example
Fig. 1!.1–9 In Refs. 1, 2, and 3, theoretical fits have be
made toM rs vs T data, assuming noninteracting particl
with a log–normal volume distribution, but these fits conta
an inflection point that does not appear to be present in
data~see Fig. 1!. Furthermore, in several of the same stud
where a marked decrease inM rs is observed at lowT,
M rs/Ms has been extrapolated down toT50 ~whereMs is
the saturation magnetization!, and the result is less than th
theoretical value expected for a system of noninterac
single domain particles.1,3,4,8,10

Another problem with the conventional treatment of lo
temperatureM rs data is that, in several studies, mean bloc
ing temperatures have been calculated fromM rs data which

a!Electronic mail: pike@geology,ucdavis.edu
9670021-8979/2000/88(2)/967/8/$17.00
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are inconsistent with other measurements. In each case, m
blocking temperature obtained withMrs data appears to be
an underestimate. Five examples from the recent litera
are given below.

~i! In studies of ferrofluids, El-Hiloet al.1 obtained a
mean blocking temperature of 32 K. According to their c
culations, this implies that a peak should occur in the ze
field-cooled~ZFC! magnetization curve at 60 K. Howeve
this predicted peak is 35 K lower than the actual measu
peak for their most dilute sample~i.e., the sample with the
least interactions!.

~ii ! In studies of barium ferrite particles, Batlleet al.4

obtained a mean blocking temperature of 81 K. According
their calculations, this gives a mean particle volume of
3104 Å 3, which is less than the value obtained from tran
mission electron microscopy~TEM! observations (1.1
3105 Å 3).4

~iii ! In studies of granular Ni–SiO2 films, Xu et al.5 and
Zhaoet al.11 used both remanence data and ac susceptib
data to measure mean blocking temperatures and to calc
mean particle volumes. However, the mean volume ca
lated from remanence data is less than the value calcul
from the ac susceptibility data by a factor of roughly 5~see
footnote in Ref. 5!.

~iv! In studies of nanosized maghemite particles, Mor
et al.8 obtained a mean blocking temperature fromM rs data
that is much lower than the same temperature obtained f
Mössbauer spectroscopy and ZFC magnetization meas
ments.
© 2000 American Institute of Physics
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~v! In studies of iron oxyhydroxide particles, Dickso
et al.7 obtained a mean blocking temperature of 9 K. Fro
this they calculated the pre-exponential factorf 0'1012Hz.
This is considerably larger than most experimental val
~which would result from an underestimate of the me
blocking temperature!.

In the above described examples, magnetic interact
are assumed to have no effect on the magnetic behavio
low temperatures. However, it has been suggested in the
erature that magnetic interactions in fine magnetic part
systems will destabilize the saturation remanence state.8,10 In
order to account for the above described data, we sugges
following hypothesis: at lowT, these destabilizing interac
tions accelerate the decay ofM rs with increasingT; this gives
rise to an effective reduction in the blocking temperatu
associated with saturation remanence. In this article, we
cuss some possible objections to this hypothesis. We
model these destabilizing interactions with a simple me
field model. This model producesM rs curves that have a
steep slope at lowT, consistent with the experimental curve
frequently reported in the literature.

II. REDUCED BLOCKING TEMPERATURES

The effect of interactions in fine magnetic particle sy
tems has been widely studied. It is widely thought that stro
interactions at low temperatures will give rise to a spin-gla
like state.12–15 In low temperature ac susceptibility and ZF
magnetization measurements, an increase in particle con
tration leads to increased blocking temperatures.13–15At first
glance, this result seems to contradict the above descr
hypothesis. However, no contradiction actually exists
cause the blocking temperatures obtained fromM rs data are
not directly comparable to those obtained from ac susce
bility and ZFC magnetization measurements.

Both ac susceptibility and ZFC magnetization measu
ments are made with an applied field that is small eno
that nonlinear effects can be ignored. In a ZFC magnet
tion measurement, the sample is cooled in zero field~starting
from a high enough temperature that the sample is superp

FIG. 1. The temperature variation of the reduced saturation remanen
different concentrations of fine Fe2O3 particles. The solid curve is the fit o
a model assuming no interactions and a log–normal distribution of volu
@after El-Hilo et al. ~Ref. 1!#.
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magnetic! usually down to liquid helium temperature. A
small applied field, usually not larger than 1 mT, is th
applied and the magnetization is measured as a functio
increasing temperature. In ac susceptibility measuremen
sample is also cooled in zero field, and an ac field usually
larger than 0.1 mT is applied. In these low field experimen
the low energy state of a fine magnetic particle system w
consist of a spin-glass-like state with small net magneti
tion. Interactions act to stabilize this state, making it mo
difficult for an individual moment to switch direction; henc
interactions increase the blocking energies and temperatu
By contrast, in the low temperature saturation remane
state, the moments will be predominantly oriented towa
the previously applied field. The same antiferromagnetic
teractions which give rise to a spin-glass-like state can o
push moments away from the direction of saturation rem
nence. Interactions will therefore destabilize the saturat
remanence state, and decrease the blocking temperature
served during thermal decay of saturation remanence.
therefore possible that ac susceptibility and ZFC magnet
tion curves will yield different blocking temperatures tha
the thermal decay of saturation remanence.

It is more difficult to reconcile our hypothesis—that in
teractions reduce the blocking temperatures associated
the saturation remanence—with the results of El-Hiloet al.,1

who report thatM rs/Ms is unaffected when the particle con
centration is increased in a ferrofluid. An extrapolation
their M rs/Ms data toT50 actually appears to give a smalle
remanence for the concentrated sample than for the d
sample~Fig. 1!. Nonetheless, the difference is small, and th
has been cited as evidence that interactions do not a
M rs.

1 This result, however, has another explanation: We s
gest that in any ferrofluid, even a nominally dilute samp
there is inevitably a certain amount of particle agglome
tion. In more concentrated samples, the distance between
glomerations decreases and their size increases, but s
agglomerations are nonetheless present even in the mos
lute samples. Djurberget al.13 have found evidence for sma
particle agglomerations even in their most dilute ferroflu
and even after the particles had been coated with a surfa
layer to prevent agglomeration. With regard to the data
El-Hilo et al.,1 we suggest that most of the reduction inM rs

~due to interactions! takes place even in the dilute sampl
due to small particle agglomerations.

In summary, our hypothesis—that interactions redu
the blocking temperatures associated with thermal deca
remanence—is consistent with experimental data. It is a
consistent with a Monte Carlo simulation of an interacti
granular magnetic solid at low temperatures.16

III. MEAN FIELD MODEL

We have modeled the effect of interactions on saturat
remanence using a simple mean field treatment. A mean
treatment of interactions would not be applicable to a sp
glass-like state, where the moments order with no prefer
direction. However, in a low temperature saturation rem
nence state, the moments will be predominantly oriented
wards the previously applied field. Hence, the interact
field will also have a preferred direction. The fact that sa
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ration remanence is experimentally observed to be less
the noninteracting value indicates that the preferred direc
of the interaction field is antiparallel to the magnetizatio
Our mean interaction field is intended to model this prefer
direction. A mean field treatment of interactions in fine p
ticle systems has previously proven useful in analyzing
romagnetic resonance data17 anddM curves.18

Consider a collection of uniaxially anisotropic particl
with identical volumeV, anisotropy fieldHk , and spontane-
ous magnetizationI s , where the particle easy axes a
aligned with thez axis. Let the available orientation of eac
particle moment be restricted to the positive and negativz
direction ~up and down, respectively!. Let T↑↓ denote the
probability per unit time that an up moment flips down;T↓↑
is the opposite probability. Then

T↑↓5 f a exp~2EB↑↓ /kT!, ~1!

whereEB↑↓ is the energy barrier that must be overcome
an up moment to switch down,k is Boltzmann’s constant
and f a is an ‘‘attempt’’ frequency, estimated at rough
109 Hz. A similar expression applies toT↓↑ . The rate of
change of the total normalized magnetic moment is

ṁ52~T↑↓2T↓↑!2m~T↑↓1T↓↑!. ~2!

In the presence of an applied fieldHapp, where 2Hk

<Happ<Hk , we have19

EB↑↓5
VIsHk

2
~11Happ/Hk!

2 ~3!

and

EB↓↑5EB↑↓22VIsHapp. ~4!

If Happ,2Hk or Hk,Happ, then no energy barrier exist
and all the moments align with the applied field. If we r
place Happ with a mean interaction fieldHm f52amHk ,
wherea is dimensionless, then Eq.~2! becomes

ṁ52 f a expF2
VIsHk

2kT
~11~am!2!G

3S 2 sinhFVIsHkam

kT G12m coshFVIsHkam

kT G D . ~5!

Consider next a collection of particles with a normaliz
distribution of volumesF(V), where particles having vol
ume betweenV2dV and V1dV make up a fraction
2dVF(V) of the total volume. Let us define a dimensionle
volume v[V/V̄ and a dimensionless distributionf (v)
[V̄F(vV̄), whereV̄ is the peak ofF(V). Let us writeM
5*dv f (v)m(v) andHm f52aMH. Note thatf (v) will be
peaked atv51. Let us also introduce a dimensionless te
peratureT̄[kT/V̄I sHk . Then Eq.~5! becomes
Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP
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ṁ~v,t !52 f a expF2
v

2T̄
~11a2M ~ t !2!G

32S sinhF vaM ~ t !

T̄
G1m coshF vaM ~ t !

T̄
G D .

~6!

Equation~6! together withM5*dv f (v)m(v) comprises an
integral differential equation for the time dependence of
magnetization.

In a measurement ofM rs, a saturating applied field is
removed att50 and the magnetization is measured at a ti
tm later. In a typical measurement,tm is roughly 100 s.
Henceforth in this article, we will fixtm at 100 s, andM rs

will be treated as a function ofT̄.
To model the measurement ofM rs, for a,1, we have

the initial conditionm(v,t50)5M (t50)51. However, for
a.1, if M51, this would makeHm f less than2Hk , which
would imply that all the moments instantaneously switch t
negative orientation. Then, by the same reasoning,M521
andHm f would be greater thanHk , which would imply that
all the moments instantaneously switch to a positive orien
tion; this is a contradiction. The source of this problem is t
assumption that the saturating field is removed instan
neously att50. In an actual measurement,Happ is ramped
down from a large positive value to zero over some fin
time interval ~of length Dt! ending at t50. As Happ is
ramped down,M must decrease enough that the above
scribed contradiction is avoided, i.e.,Happ1Hm f>2Hk . In-
serting,Hm f52aMHk , this becomes

M<~Hk1Happ!/~Hka!. ~7!

While Happ is ramping down,M (t) will be governed by
Eq. ~6! but is also constrained by the upper bound in Eq.~7!
and byM<1. In the limit whereDt is infinitesimally small,
Eq. ~6! can lead to only an infinitesimal decrease inM (t) as
the field is ramped down. Therefore, in this limit,M ap-
proaches the lesser of the two upper bounds. Whent50, we
haveHapp50, and Eq.~A27! becomesM<1/a. For a.1,
this becomes the dominant upper bound. Therefore, in
limit of small Dt, for a.1, the initial condition becomes
M (t50)51/a.

IV. MODEL RESULTS

Analytical solutions to the mean field model can be o
tained in certain limiting cases, as described in the appe
ces. In the limit of smalla ~Appendix A!, the mean interac-
tion field shifts the peak in the distribution of blockin
temperatures,r(T̄)52dMrs/d(T̄), to lower T̄ ~Fig. 2!. ~As
shown in Appendix A, the unblocking temperature of
non-interacting particle withv51 is T̄51/C, where C
[2 ln@2tmfa/ln(2)#. Therefore, it is natural to plot our result
as a function ofCT̄). Fora>0, in the limit asT̄ goes to zero
~Appendix B!, M (T̄) approaches 1, andr(T̄) approaches
zero; this implies that a peak is still present in the distrib
tion of blocking temperatures at someT.0. Fora>1, in the
limit as T̄ andDt go to zero~Appendix C!, we have simpli-
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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fied the model by letting all the particles have identical v
ume, and we have shown thatM rs has the functional form

(1/a)(12aAT̄), wherea is a fitting parameter. Hence, th
peak in the distribution of blocking temperatures has v
ished. Zhaoet al. found that their low temperatureM rs data
fit this functional form.11

In our numerical calculations, the continuous volum
distribution was approximated by delta functions at t
equally spaced volumesv i . The model then becomes a sy
tem of ten coupled differential equations that can be sol
by the Runge–Kutta method. These delta functions w
each weighted byf (v i), where f (v) is a log–normal distri-
bution with a peak at 1 and logarithmic standard deviation
0.26. To obtainM rs for a<1, Eq. ~6! was evaluated attm

5100 s, with initial conditionm(t50,v i)50. Fora.1, we

FIG. 2. The distribution of blocking temperaturesr(CT̄) as a function of

CT̄, calculated usingf (v)52v2exp(20.666669v3) and Eqs.~A14! and
~A15!, for aC5@0,0.07,0.14,0.21,0.28#. The dotted line is the noninteract
ing case, i.e.,aC50. Curves for increasing values ofaC have peaks which

progress to lowerCT̄. We definedT̄ so that a particle at the peak volum

V̄, has an unblocking temperatureT̄51/C, i.e., CT̄51.

FIG. 3. Numerical calculation of saturation remanence as a function ofCT̄
for 0<a<1.5. Forf (v), a log–normal distribution was used with a peak
v51 and logarithmic standard deviation of 0.26. With increased inte
tions, the effective blocking temperatures progressively decrease.
Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP
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incorporated an applied field that starts at a large posi
value~just prior tot50! and is quickly ramped down to zer
~at t50!.

Calculations ofM rs are shown as a function ofCT̄ for a
range of a values in Fig. 3. Additional low temperatur
points are shown fora51 in Fig. 4; note thatM rs appears to
approach 1 asT̄ goes to zero fora51. In Fig. 3, fora.1,
M rs appears to approach a value less than 1 asT̄ goes to zero.
These numerical results also indicate that when interact
are strong~i.e., a>1!, M rs has a steep slope at lowT̄. This
is consistent with the lowT remanence curves frequent
found in the literature1–9 and suggests that interaction
should be considered as an explanation for curves with
behavior. The eight points with lowestT̄ in Fig. 4 closely fit

the function (121.3AT̄). This functional form is consisten
with our analytical results and also with the experimen
data of Zhaoet al.11

V. CONCLUSIONS

In the presence of strong magnetic interactions, the
tribution of blocking temperatures associated with the th
mal decay of saturation remanence is not directly com
rable to the distribution of blocking temperatures obtain
from ac susceptibility or ZFC magnetization curves. This
because the later are measured in low fields, in which th
systems order into spin-glass-like states that are stabilize
interactions, leading to increased blocking temperatures.
contrast, interactions destabilize the saturation remane
state, drive it to a lower magnetization, and lead to an app
ent reduction in the blocking temperatures. A mean inter
tion field model predicts that when interactions are stro
there will be a reduction inM rs at T50, and thatM rs will
have a (12aAT) functional dependence at lowT, wherea is
a fitting parameter. This is consistent with the marked
crease inM rs that is observed with increasingT in many fine
magnetic particle systems. It also suggests that the effec
magnetic interactions have been inappropriately ignored
many studies of low temperature saturation rem
-

FIG. 4. Additional calculations of saturation remanence at lowerT̄ for a
51. The same function was used as forf (v) as in Fig. 3. The lowest 8

points inT̄ were fitted to (1-aAT̄), wherea51.3. These data illustrate the
marked thermal decay ofM rs that is often observed in experimental resul
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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nence. Pikeet al.20 recently described a sensitive techniq
for estimating the effects of magnetic interactions in fi
particle systems. Use of this technique at lowT might help to
resolve some of the anomalies that are frequently see
analyses of low temperatureM rs data.

ACKNOWLEDGMENTS

This work was supported by the University o
Southampton Annual Grant Scheme and the Center for
tistics in Science and Technology at the University of Ca
fornia, Davis.

APPENDIX A: ANALYTIC SOLUTION FOR SMALL a

We are interested in the effect of weak interactions
the peak of the distribution of blocking temperatures,r(T̄).
Let us treat this as a perturbation of the noninteracting c
i.e.,a50. We will let mo(v,t) denote the solution of Eq.~6!
for a50, with initial condition mo(v,t50)51. It can be
shown that:

mo~v,t !5exp@22t f aG~v,T̄!#, ~A1!

where we use the notationG(v,T̄)[exp@2v/2T̄#. Similarly,
the total magnetization in the noninteracting case will
denoted byMo(t), and this equals

Mo~ t !5E dv f ~v !exp@2t f a2G~v,T̄!#. ~A2!

It is well known that, due to the large magnitude of (tmf a),
exp@2tmfa2G(v,T̄)# can be approximated by the step functi
Q(v2vo

ct), where Q(x)5$0 forx,0;1 forx.0%, where
vo

ct is a cutoff volume given by

vo
ct5CT̄, ~A3!

where C[2 ln@2tmfa /ln(2)#; the subscript ‘‘o’’ again indi-
cates this is the noninteracting system. Thus, in the nonin
acting case

M rs~ T̄![M ~ tm!512E
0

vo
ct

dv f ~v !. ~A4!

Equation~A4! implies that the peak ofr(T̄) occurs whenvo
ct

is at the peak off (v), i.e., whenvo
ct51. Hence, the peak o

r(T̄) is at T̄51/C. The following perturbation analysis wil
be carried out forv near 1 andT̄ near 1/C.

Let us expand Eq.~6! to first order ina:

ṁ~v,t !522 f aG~v,T̄!~m~v,t !1avM ~ t !/T̄!. ~A5!

We can write m(v,t)5mo(v,t)1am1(v,t), and where
m1(v,t50)50. Similarly, we write M (t)5Mo(t)
1aM1(t). Collecting terms to first order ina, Eq. ~A5!
becomes

ṁo~v,t !1aṁ1~v,t !522 f aG~v,T̄!S ṁo~v,t !

1aṁ1~v,t !1aMo~ t !
v

T̄
D . ~A6!
Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP
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Becausemo(v,t) solves Eq.~6! with a50, Eq. ~A6! be-
comes

ṁ1~v,t !522 f aG~v,T̄!S m1~v,t !1Mo~ t !
v

T̄
D . ~A7!

Equation~A7! with initial condition m1(v,t50)50 has the
solution

m1~v,t !52
2v f a

T̄
G~v,T̄!E

0

t

dt8Mo~ t8!

3exp@22~ t2t8! f aG~v,T̄!#. ~A8!

Inserting Eq.~A2! for M (t8), with n for the dummy variable
in the integral, Eq.~A8! becomes

m1~v,t !5exp@22t f aG~v,T̄!#

3S 2
2v f a

T̄
D G~v,T̄!E dn f ~n!E

0

t

dt8

3exp@2t8 f aG~v,T̄!#exp@22t8 f aG~n,T̄!#.

~A9!

Evaluating Eq.~A9! at t5tm gives

m1~v,tm!

5exp@22tmf aG~v,T̄!#S 2
2v f a

T̄
D G~v,T̄!E dn f ~n!

3F exp@2tmf a~G~v,T̄!2G~n,T̄!!#21

2 f a~G~v,T̄!2G~n,T̄!!
G

52
v

T̄
E dn f ~n!

3H exp@22tmf aG~v,T̄!#2exp@22tmf aG~n,T̄!#

G~n2v,T̄!21
J .

~A10!

It can be shown numerically that, forT̄ near 1/C andv
near 1, the expression in the curly brackets of Eq.~A10!, as
a function ofn, can be approximated by this step function

$....curly brackets in Eq.~A10!...%

5~12exp@22tmf aG~v,T!# !u~n2vo
ct!. ~A11!

The coefficient in front ofu(n2vo
ct) in Eq. ~A11! can be

obtained by taking the limit of the expression in the cu
brackets asn goes to infinity. But exp@22tmfaG(v,T)# is just
mo(v,tm) and can be approximated by the step functi
u(v2vo

ct). So,

$....curly brackets in Eq.~A10!...%

5~12u~v2vo
ct!!u~n2vo

ct!. ~A12!

Integrating overn in Eq. ~A10! gives
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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m1~v,tm!52
v

T̄
~12u~v2vo

ct!!E
0

`

dn f ~n!u~n2vo
ct!

52
v

T̄
~12u~v2vo

ct!!E
no

ct

`

dn f ~n!. ~A13!

We next insert Eq.~A13! into m(v,tm)5mo(v,tm)
1am1(v,tm), and insert this intoM5*dv f (v)m(v). We
replacemo(v,tm) with u(v2vo

ct). We get

M rs5M ~ tm!5S E
CT̄

`

dv f ~v !D S 12
~aC!

CT̄
E

0

CT̄
dv3v f ~v !D .

~A14!

Equation~A14! reduces to Eq.~A4! for the noninteracting
case. The distribution of blocking temperatures as a func
of CT becomes:

r~CT̄!52
dMrs

d~CT̄!
. ~A15!

To proceed further, we insert a specific function forf (v)
into Eq. ~A14!. If a log–normal function is used forf (v),
then the indefinite integral ofv f (v) does not have a close
form. We have used the distributionf (v)52v2 exp
3(20.66667v3), which is peaked atv51, in order to obtain
a closed form solution. Kaysseret al. derived this size dis-
tribution from a model of particle growth by coalescen
during liquid phase sintering.21 We have evaluatedr(CT̄)
for several values of (Ca) using Eqs.~A14! and~A15!. The
results are shown in Fig. 2.

APPENDIX B: ANALYTIC SOLUTION FOR SMALL T̄;
aË1

In the limit asT̄ goes to zero, Eq.~6! becomes

ṁ~v,t !52 f a expF2
v

2T̄
~11a2M ~ t !2!G

3~11m~v,t !!expF vaM ~ t !

T̄
G

52 f a expF2
v

2T̄
~12aM ~ t !!2G ~11m~v,t !!.

~A16!

The solution of Eq.~A16! with initial condition m(v,t50)
51 is

m~v,t !52 expF2 f aE
0

t

dt8

3expF2
v

2T̄
~12aM ~ t8!!2G G21. ~A17!
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Becausea,1 andM<1, m(v,t) given by Eq.~A16! will go
to 1 in the limit asT̄ goes to zero. Hence,M (t) andM rs(T̄)
also go to 1. Therefore, in the limit asT̄ goes to zero,@1
2M (t)# goes to zero, and we can write

Limit
T̄→0

~12aM ~ t !!2

5~12a!2

1Limit
T̄→0

$22a~12a!@M ~ t !21#1a2@M ~ t !21#2%

5~12a!212a~12a!~12M ~ t !!. ~A18!

Thus, in the limit asT̄ goes to zero, we can write Eq.~A17!
as

m~v,t !52 expF2 f a expF2
v

2T̄
~12a!2G E

0

t

dt8

3expF2
n

2T̄
2a~12a!~12M ~ t !!G G21.

~A19!

Since@12M (t8)#, (12a), anda are greater than zero, the
t.*0

t dt8 exp@2v/2T̄2a(12a)(12M (t8))#.
We can insert this inequality into Eq.~A19! to get

m~v,t !.2 expF2 f at expF2
v

2T̄
~12a!2G G21. ~A20!

If we insertm(v,t) into M5*dv f (v)m(v) and evaluateM
at t5tm , this gives usM rs(T̄). Using the inequality of Eq.
~A20! gives

12M rs~ T̄!,22E dv f ~v !2 expF2 f atm

3expF2
v

2T̄
~12a!2G G . ~A21!

The exponent in Eq.~A21! @compare with Eq.~A1!# can be
approximated by the step functionu(v2vo

ct/(12a)2). As-
suming f (v) is a slowly varying function ofv and inserting

vo
ct5CT̄, Eq. ~A21! becomes

12M rs~ T̄!,2E
0

CT̄/~12a!2

dv f ~v !. ~A22!

Using Eq.~A22!, the distribution of blocking tempera
tures atT̄50 can be written

r~0![Limit
T̄→0

2~M rs~ T̄!2M rs~ T̄50!!

T̄

,Limit
T̄→0

2

T̄
E

0

CT̄/~12a!2

dv f ~v !, ~A23!
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whereM rs(T̄50)51 for a,1. We know thatf (v) vanishes
at v50, and we can assume that it is positive and we
behaved forv.0, so we can write

Limit
x→0

1

x E
0

x

dv f ~v !, f ~x!, ~A24!

and Eq.~A23! becomes

r~ T̄50!,
2C

~12a!2 f S CT̄

~12a!2D . ~A25!

Hence,r(T̄) goes to zero in the limit asT̄ goes to zero.

APPENDIX C: ANALYTICAL SOLUTION aÐ1 AND
SMALL T

Let us simplify the model by letting all particles hav
identical volume, sov51, andM5m(v51). In the limit of
small T̄, Eq. ~6! becomes Eq.~A16!. With initial condition
M (t50)51/a this has solution

M ~ t,T̄!5S 11
1

a
D expF2 f aE

0

t

dt8

3expF2
1

2T̄
~12aM ~ t8,T̄!!2G G21. ~A26!

Let us definef(t,T̄) such that

M ~ t,T̄!5~1/a!@12AT̄f~ t,T̄!!]. ~A27!

By inspection of Eq.~A26! we know thatM (t,T̄) is less than
1/a and that, at fixedt, M (t,T̄) goes to 1/a as T̄ goes to 0.
Therefore,f(t,T̄) is a positive function and, at a fixedt,
AT̄f(t,T̄) goes to 0 asT̄ goes to 0. We will next prove that
keepingt fixed, asT̄ goes to 0,f(t,T̄) goes to infinity, but it
does so slower than (1/T̄)g for any positive numberg. In
other words, asT̄ goes to 0, the order off(t,T̄) in (1/T̄)
approaches zero. This implies thatM (t,T̄) approaches

(1/a)@12aAT̄#, wherea is a fitting parameter.
Proof:

Inserting Eq.~A27! into Eq. ~A26! gives

12AT̄f~ t,T̄!1a

11a
5expF2 f aE

0

t

dt8 expF2
f~ t,T̄!2

2
G G .

~A28!

Let t* be a fixed time, and lett1 and t2 be two times
such thatt1<t* <t2 , where (t22t1) is small. Let us evalu-
ate Eq.~A28! at t1 and t2 , and divide the later result by th
former. We get

12AT̄f~ t2 ,T̄!1a

12AT̄f~ t1 ,T̄!1a

5expH 2 f aE
t1

t2
dt8expF2

f~ t* T̄!2

2
G J . ~A29!

Since (t22t1) is small, we can write, Eq.~A29! as
Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP
-
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AT̄~ t22t1!
]

]t
f~ t,T̄!U

t*

12AT̄f~ t1 ,T̄!1a

5expH 2 f a~ t22t1!expF2
f~ t* ,T̄!2

2
G J . ~A30!

Since AT̄f(t* ,T̄) goes to 0 asT̄ goes to 0, and since
AT̄f(t,T̄) is positive, we know thatAT̄]/]t@f(t,T̄)#u t*
must also go to 0. Therefore, asT̄ goes to 0, the left hand
side of Eq.~A30! goes to 1. In order that the right hand sid
also goes to 1, we know thatf(t* ,T̄) must go to infinity.

Since both sides of Eq.~A30! go to 1 asT̄ goes to 0, we
can expand the exponent on the right hand side to first o
of its argument. Let us also subtract one from each side
Eq. ~A30!, and multiply by sides by a negative sign, an

omit AT̄f(t1 ,T̄) in the denominator of the left hand side
since this goes to 0 asT̄ goes to 0. Then, in the limit asT̄
goes to 0, Eq.~A30! becomes

AT̄~ t22t1!
]

]t
f~ t,T̄!U

t*
11a

5 f a~ t22t1!expF2
f~ t* ,T̄!2

2
G .

~A31!

Sincef(t,T̄) is a positive function, then in the limit asT̄
goes to 0, we know that]f(t,T̄)/]tu t* will have the same
order in (1/T̄) as doesf(t* ,T̄). Therefore, Eq.~A31! im-
plies

O~1/T̄!~AT̄f~ t* ,T̄!!5O~1/T̄!S expF2
1

2
f~ t* ,T̄!2G D ,

~A32!

whereO(1/T̄) gives the order in (1/T̄) of the indicated expres
sion. Let us next suppose that in the limit asT̄ goes to 0,
f(t* ,T̄).(1/T̄)g for some positive numberg. Then

O~1/T̄!~AT̄f~ t* ,T̄!!.g21/2, ~A33!

and also

O~1/T̄!S expF1

2
~1/T̄!2gG D,O~1/T̄!S expF1

2
f~ t* ,T̄!2G D

52O~1/T̄!S expF2
1

2
f~ t* ,T̄!2G D .

~A34!

Combining Eqs.~A32!–~A34!, we get

O~1/T̄!S expF1

2
~1/T̄!2gG D,1/22g. ~A35!

But, in the limit asT̄ goes to 0, the exponent in Eq.~A34!

will have a larger order in (1/T̄) than any polynomial. There
fore, a contradiction has occurred. And therefore we kn
that in the limit asT̄ goes to 0,f(t* ,T̄) will be smaller than
(1/T̄)g for any positive value ofg.
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